USD32,89
EURO35,72
GBP42,49
BIST11.102,04
GR. ALTIN2.541,90
BTC66.280,15
Son Gelişmeler
  1. Haberler
  2. Haberler
  3. 5 Python libraries to interpret machine learning models — TradingView Haberleri

5 Python libraries to interpret machine learning models — TradingView Haberleri

Coinbase, ABD'nin dört eyaletinde staking hizmetlerini duraklattı — TradingView Haberleri
service
Paylaş

Bu Yazıyı Paylaş

veya linki kopyala


Understanding machine learning models’ behavior, predictions, and interpretation is essential for ensuring fairness and transparency in artificial intelligence (AI) applications. Many Python modules offer methods and tools for interpreting models. Here are five to examine:

What is a Python library?

A Python library is a collection of pre-written code, functions and modules that extend the capabilities of Python programming. Libraries are designed to provide specific functionalities, making it easier for developers to perform various tasks without writing all the code from scratch.

One of Python’s advantages is the wide variety of libraries it provides, which may be used to address multiple application areas. These libraries address various topics, including scientific computing, web development, graphical user interfaces (GUI), data manipulation and machine learning.

Developers must import a Python library into their Python code in order to use it. They can use pre-existing solutions and avoid reinventing the wheel by utilizing the functions and classes provided in the library once they have been imported.

For instance, the Pandas library is used for data manipulation and analysis, whereas the well-known NumPy library offers functions for numerical computations and array operations. Similarly, the Scikit-Learn and TensorFlow libraries are employed for machine learning jobs, and Django is a well-liked Python web development framework.

5 Python libraries that help interpret machine learning models

Shapley Additive Explanations

Cooperative game theory is used by the well-known Python module Shapley Additive Explanations (SHAP) to interpret the results of machine learning models. By allocating contributions from each input feature to the final result, it offers a consistent framework for feature importance analysis and interprets specific predictions.

The sum of SHAP values, which maintain consistency, determines the difference between the model’s prediction for a specific instance and the average prediction.

SHAP: Explain Any Machine Learning Model in Python #MachineLearning #AI #DeepLearning pic.twitter.com/A7lBAmkY8Y

Şub 27, 2022

Local Interpretable Model-Independent Explanations

Local Interpretable Model-Independent Explanations (LIME) is a widely used library that approximates sophisticated machine learning models with interpretable local models to aid in their interpretation. It creates perturbed instances close to a given data point and tracks how these instances affect the model’s predictions. LIME can shed light on the model’s behavior for particular data points by fitting a straightforward, interpretable model to these perturbed instances.

Explain Like I’m 5

A Python package called Explain Like I’m 5 (ELI5) seeks to give clear justifications for machine learning models. It provides feature importance using a variety of methodologies, including permutation significance, tree-based importance and linear model coefficients, and it supports a wide range of models. New and seasoned data scientists can utilize ELI5 thanks to its simple user interface.

Yellowbrick

Yellowbrick is a potent visualization package that provides a set of tools for interpreting machine learning models. It offers visualizations for a variety of activities, such as feature importance, residual plots, classification reports and more. As a result of Yellowbrick’s seamless integration with well-known machine learning libraries like Scikit-Learn, it is simple to analyze models as they are being developed.

PyCaret

Despite being primarily recognized as a high-level machine learning library, PyCaret also has model interpretation capabilities. The entire machine learning process is automated, and PyCaret automates the creation of feature significance plots, SHAP value visualizations, and other crucial interpretation aids after the model has been trained.



0
be_endim
Beğendim
0
dikkatimi_ekti
Dikkatimi Çekti
0
do_ru_bilgi
Doğru Bilgi
0
e_siz_bilgi
Eşsiz Bilgi
0
alk_l_yorum
Alkışlıyorum
0
sevdim
Sevdim
Sorumluluk Reddi Beyanı:

Bu kripto haber sitesi, genel bilgi amaçlıdır ve yatırım tavsiyesi sağlamayı amaçlamamaktadır. Sitede yer alan içerikler yalnızca bilgilendirme amacıyla sunulmaktadır ve herhangi bir yatırım kararı almadan önce bağımsız bir finansal danışmana danışmanız önerilir. Sitede sunulan bilgilerin doğruluğu ve güncelliği konusunda herhangi bir garanti verilmemektedir. Kullanıcılar, kendi riskleri ve sorumlulukları altında hareket etmelidir. Sitedeki harici bağlantılar ve reklamların içerikleri üzerinde kontrol sağlanamamaktadır ve bu tür bağlantıların kullanımından kaynaklanan herhangi bir zarar veya kayıptan sorumlu tutulamazız. Sitedeki içeriklerde yer alan görüşler, yazarların veya kaynakların görüşlerini yansıtmaktadır ve bu görüşlerin doğruluğu veya geçerliliği konusunda sorumluluk kabul edilmemektedir.

E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Giriş Yap

Kripto Haberi - Güncel Kripto Para Haberleri, Analizler ve Bilgiler ayrıcalıklarından yararlanmak için hemen giriş yapın veya hesap oluşturun, üstelik tamamen ücretsiz!